Системы освещения в птицеводстве. Прошлое и настоящее.

Технический директор ООО «Техносвет групп»

Гладин Дмитрий Викторович

Системы освещения в птицеводстве. Прошлое и настоящее.

Технический директор ООО «Техносвет групп» Д.Гладин

Свет является одним из важных факторов окружающей среды, активно влияющим на жизнь, рост и развитие птицы. Современные птичники представляют собой изолированные от внешней среды системы, в которых управляемый человеком микроклимат, направленный повышение производственных показателей. Отсутствие солнечного света обуславливает необходимость использования в птичниках искусственного освещения. Источники света в составе такого освещения объединены в централизованном осветительные системы, управлении которыми современные высокоэффективные режимы прерывистого используются освещения.

В современном птицеводстве в качестве источников света используются лампы накаливания и люминесцентные лампы, а также светодиоды. Причем в настоящее время светильники на основе светодиодов активно вытесняют Практически источники света. каждый новый проект строительству птичников предусматривает использование светодиодного Активно ведется устаревшего освещения. замена осветительного оборудования на светодиодное в уже используемых корпусах выращивания и содержания птицы. Только научно-техническое предприятие «TEXHOCBET ГРУПП», являющееся российским лидером в производстве светодиодных систем освещения для птицеводства, с 2009 года установило более 1700 комплектов современного светодиодного осветительного оборудования для птичников на 175 предприятиях России, Казахстана, Украины, Таджикистана и других стран. Общее количество светодиодных светильников, находящихся в настоящий момент в эксплуатации, на этих предприятиях превышает 600 000 штук. На таких предприятиях, как ГАП «РЕСУРС» системы светодиодного освещения производства нашей компании установлены в 50 % от общего числа птичников для выращивания бройлеров и на репродукторах (фото 1). Активно с участием «ТЕХНОСВЕТ ГРУПП» ведется замена осветительного оборудования в агрохолдинге «БЕЛАЯ ПТИЦА» - более 70 корпусов ремонтного молодняка и родительского стада в 2015 году оборудованы светодиодным освещением. Группа «ЧЕРКИЗОВО» в 2015 году произвела модернизацию освещения на светодиодное в более, чем 180 корпусах выращивания бройлеров, содержания ремонтного молодняка и родительского стада. В Казахстане на АО «АЛЕЛЬ АГРО» с 2011 года оборудовано светодиодным освещением более 80 птичников по выращиванию бройлеров.

На предприятиях по производству яйца также активно ведется внедрение светодиодного освещения. В 50 корпусах в настоящий момент используются светодиоды в агрохолдинге «ЧЕБАРКУЛЬСКАЯ ПТИЦА» (фото 2), свои корпуса современным светодиодным освещением оснащает «АК БАРС», ЗАО «ГАЛИЧЕСКОЕ» ПО комплекс птицеводческий ПТИЦЕВОДСТВУ», «ПТИЦЕФАБРИКА «ВАРАКСИНО», 3AO «ПТИЦЕФАБРИКА «ШАРЬИНСКАЯ», **3AO** «ПТИЦЕФАБРИКА «ЧАЙКОВСКАЯ», белорусское предприятие OAO «1-я МИНСКАЯ ПТИЦЕФАБРИКА» и другие.

Такие крупные индейководческие предприятия как ГК «ДАМАТЕ», ООО «МОРОЗОВСКАЯ ПТИЦЕФАБРИКА» с 2014 года используют светодиодное освещение компании «ТЕХНОСВЕТ ГРУПП» в общей сложности на более чем 190 птичниках (фото 3).

Компания «ТЕХНОСВЕТ ГРУПП» с 2010 года активно сотрудничает с представительствами в России немецкой компании «BIG DUTCHMAN».

Фото 1 Светодиодное освещение «ТЕХНОСВЕТ ГРУПП» в корпусе 18 ×96 метров напольного выращивания цыплят — бройлеров на предприятии ГАП «РЕСУРС»

Фото 2 Светодиодное освещение «ТЕХНОСВЕТ ГРУПП» в корпусе репродуктора 18 ×132 метров на предприятии ООО «ЧЕБАРКУЛЬСКАЯ ПТИЦА»

Фото 3 Светодиодное освещение «ТЕХНОСВЕТ ГРУПП» в корпусе выращивания идейки 12 ×96 метров на предприятии ООО «ПТИЦЕФАБРИКА МОРОЗОВСКАЯ»

Основными критериями, по которым можно сравнить источники света, используемые в птицеводстве, являются:

1. Энергоэффективность.

Считается, что основные затраты птицеводческого предприятия на электроэнергию освещением особенно связаны \mathbf{c} птичников, когда используются лампы накаливания. Светодиодные светильники за счет высокоэффективных источников света – светодиодов и их направленных свойств позволяют снизить потребление электроэнергии по сравнению с лампами накаливания в 10-12 раз, с люминесцентными в 1,5-3 раза при освещенности. В таблице сохранении нормативной 1 приведены сравнительные данные по потреблению электроэнергии осветительного оборудования на люминесцентных лампах и светодиодных светильниках на одной из площадок по напольному выращиванию бройлера птицеводческого предприятия ГАП «РЕСУРС», расположенной в Ставропольском крае.

Табл. №1
Потребление электроэнергии на освещение для корпуса размерами 18
×96 при напольном выращивании цыплят – бройлеров для различных источников света

Размеры корпуса, м	Тип источников света	Среднее значение освещенности, лк	Потребление электроэнергии за тур (43дня) выращивания птицы, кВт/час
18×96	Трубчатые	45	3 145
	люминесцентные		
	лампы		
18×96	Компактные	45	1 435
	люминесцентные		
	лампы		
18×96	Твердотельные	45	921
	источники света		
	(светодиоды)		

2. Безопасность эксплуатации осветительного оборудования.

Лампы накаливания и люминесцентные лампы, как правило, имеют напряжение питания промышленной сети — переменное 220 В. Птичники согласно 1.1.13 Правил устройства электроустановок (ПУЭ-7) можно отнести к категории помещений с повышенной опасностью поражения людей электрическим током, особенно в период мойки и обслуживания оборудования. Светодиоды, являясь источниками света, напряжение питания

которых составляет не более 3,5 В, позволяют использовать светильники напряжением 24 В, 36 В, 48 В постоянного напряжения. Использование электропитания осветительного оборудования с такими параметрами позволяет существенно повысить безопасность обслуживающего персонала в течение всего процесса выращивания или содержания птицы.

3. Управление освещением, реализация современных режимов прерывистого освещения.

В настоящее время практически все птицеводческие хозяйства не только в России, но и во всем мире используют те или иные режимы прерывистого освещения. Их эффективность по сравнению с постоянным освещением доказана не только научными исследованиями, но и опытом практического применения. Позволяя корректировать в определенных пределах поведение и развитие птицы, прерывистое освещение обеспечивает дополнительное сокращение расходов на электроэнергию. Реализация режимов прерывистого подразумевает наличие технической возможности осветительном оборудовании птичника управлять интенсивностью светового потока каждого светильника от 0 до 100 %, где 0 % - полное отключение источника света, 100 % - максимальное значение его светового потока. Причем для использования функции «рассвет-закат», при которой нарастание при включении и убывание при выключении освещения происходит не скачком, а равномерно в течение заданного времени, необходимо, чтобы количество градаций (значений) светового потока светильников обеспечивало ощущение непрерывного изменения освещенности в птичнике.

Тепловой принцип действия ламп накаливания позволяет управлять ими в соответствии с режимами прерывистого освещения. В тоже время необходимо помнить, что семисторные (тиристорные) схемы управления напряжением питания промышленной сети 220 В, необходимые для регулировки светового потока ламп накаливания, создают помехи в промышленной сети и могут оказывать влияние на другое не менее важное оборудование в птичнике, например, на управление системами микроклимата, вплоть до их выхода из строя.

Люминесцентные лампы, относящиеся к типу разрядных источников света, по принципу своей работы менее всего приспособлены к управляемому изменению их светового потока. Устройства, позволяющие обеспечить необходимое управление яркостью люминесцентных ламп, как правило, дорогостоящие и их использование приводит к сокращению срока службы источников света. Кроме того, большинство предложений на рынке не позволяют осуществить плавную «глубокую» регулировку от полного выключения до максимального уровня яркости. Некоторые технические

решения для управления световым потоком компактных люминесцентных ламп, предложенные как российскими, так и зарубежными производителями, к сожалению, приводят к их быстрому выходу из строя.

Светодиодные системы освещения на современном этапе лучше всего подходят по своим техническим параметрам для реализации режимов любой сложности. Обусловлено прерывистого освещения ЭТО как физическими свойствами самих светодиодов, возможностями так построения электрической схемы электропитания И управления осветительным оборудованием на базе светодиодных светильников. Светодиоды являются твердотельными полупроводниковыми источниками света, обладающими высоким быстродействием. Благодаря этому управление интенсивностью светового потока светильников можно организовать на основе широтно-импульсной модуляции (ШИМ) питающего напряжения, не меняя номинальные значения напряжения и тока питающей цепи. В этом случае с частотой порядка нескольких кГц происходит постоянное включение и выключение светодиодных светильников, причем, чем больше промежуток времени выключения питания светильников при неизменном периоде, тем меньше освещенность, которая фиксируется органами зрения живых организмов. В данном случае важно понимать, что зрение человека, животных и птицы обладает определенной инертностью (персистенцией) и может фиксировать вспышки света, частота следования которых меньше некоторого значения. Согласно санитарным нормам это значение равно 300 Гц. Считается, что выше этого значения мерцание не фиксируется органами зрения и не создает негативных последствий. Применение ШИМ позволяет обеспечить высокий коэффициент полезного действия более осветительной системы на базе светодиодов, при этом достигается практически линейная зависимость светового потока светильников управляющего воздействия, В отличие OTламп накаливания Кроме того, использование люминесцентных ламп. ШИМ позволяет создавать на основе современных технологий недорогие и надежные системы управления освещением.

4. Срок службы осветительного оборудования.

Средний срок службы ламп накаливания принято считать равным 1000 часам непрерывной эксплуатации. Для сравнения один месяц в тридцать дней - это 720 часов. Таким образом, теоретически замена вышедших из строя ламп накаливания необходима каждые полтора месяца. Для увеличения срока службы лампы накаливания выпускают рассчитанными на напряжение: 220–235, 230–240 и 235–245В, которые при нормальном напряжении имеют световой поток на 6–8% ниже, чем у обычных ламп, а срок службы удлинен

более чем вдвое, т.е. до 3000 часов. Даже при малой стоимости таких ламп, общие затраты предприятия на обслуживание и частую замену вышедших из стоя, представляют довольно существенную сумму.

В свое время снять остроту проблемы позволило использование трубчатых, а затем и компактных люминесцентных ламп. Срок службы разрядных источников света составляет 5 000 часов, а по заявлениям некоторых производителей до 10 000 часов. Следует отметить, что к концу срока службы, световой поток снижается на 30–35%.

Использование светодиодов позволяет говорить о продлении срока службы источников света до 50 000 часов и выше. В настоящее время находятся в эксплуатации системы светодиодного освещение компании «ТЕХНОСВЕТ ГРУПП» на предприятии ГАП «РЕСУРС», установленные в ноябре 2009 года. За шесть лет работы (практически 52 000 часов) освещенность в корпусах выращивания бройлеров в настоящий момент не ниже нормативной, а количество источников света, вышедших из стоя по различным причинам за это время не более 4-5 %.

5. Экологическая безопасность и обязательная утилизация.

Люминесцентные лампы по причине наличия в их составе ртути являются небезопасными с точки зрения экологии и подлежат утилизации. Даже относительно небольшое количество соединений ртути в каждой лампе при их разрушении в птичнике приводит к необходимости проводить комплекс мероприятий нейтрализации специальных ПО ядовитых предотвращению их попадания в корм, воду и на кожу птицы, а также негативного воздействия на обслуживающий персонал. Кроме того, люминесцентных ламп в обычном порядке утилизация неисправных действующим законодательством и требует запрещена передачи специализированным организациям, занимающимся переработкой нейтрализацией ядовитых Соответственно, требует веществ. ЭТО дополнительных расходов птицеводческого предприятия. В то же время лампы накаливания и светодиодные светильники не требуют специальных мер по утилизации и являются безопасными в экологическом плане.

Указанные выше сравнительные характеристики в большей степени относятся к самим источникам света, а не к системам освещения, в которых они хоть и самые важные, но, тем не менее, не единственные компоненты.

Под системой освещения следует понимать совокупность источников света, оборудования электропитания и управления освещением в помещении, позволяющем синхронно по заданной программе изменять яркость светильников в автоматическом или ручном режиме.

Осветительное оборудование в птичниках на современном этапе развития птицеводства уже невозможно рассматривать как простое совместное размещение независимых источников света, в птичниках они объединены в системы освещения, к которым предъявляются дополнительные требования:

- одновременное синхронное управление яркостью как можно большего количества светильников в соответствии с режимами прерывистого освещения;
- создание как можно лучшей равномерности освещения в заданных местах, в горизонтальной или вертикальной плоскости для создания одинаковых условий содержания всего поголовья птицы, в том числе возможность применения маломощных источников света от 0,3 до 1,5 Вт и световым потоком от 30 до 200 Лм при клеточном содержании птицы;
- создание электро- и пожаробезопасных систем освещения, частично или полностью исключающих негативное воздействие на человека, птицу и окружающую среду как в рабочем, так и в аварийном режимах;
- возможность выбора цветовой температуры или цвета (длины волны) источников света в зависимости от необходимых условий;
- обеспечение высокой цветопередачи источников света в целях улучшения условий содержания птицы и труда обслуживающего персонала.

Естественно, что вышеизложенные требования должны обеспечиваться при стоимости оборудования, монтажа и обслуживания, допускающей окупаемость в разумные сроки.

Системы освещения на лампах накаливания.

Еще 30-40 лет назад в птичниках практически повсеместно использовались лампы накаливания. Свет, как правило, был включен круглосуточно, что вело к огромным затратам на электроэнергию и снижало производственные показатели. Освещенностью в помещении пытались управлять отключением части светильников, расположенных в одной линии или, например, через один светильник. Появление первых в мире исследований в области режимов прерывистого освещения во Всероссийском научно-исследовательском и технологическом институте птицеводства г. Сергиев Посад в 90-х годах качественно прошлого позволило поднять на новый уровень эффективность производства яйца И мяса определило ПТИЦЫ И необходимость объединения осветительного оборудования птичников в полноценные системы освещения.

Система освещения птичника на лампах накаливания в общем случае состоит из двух компонентов — непосредственно из самих ламп накаливания и устройства (блока) электропитания и управления освещенностью. Наибольшее распространение в Российской Федерации имеют лампы

накаливания, параметры электропитания которых рассчитаны на подключение непосредственно (без преобразования) к промышленной сети 220 В переменного тока, хотя существуют лампы накаливания 36 В переменного тока, а также постоянного тока. В таблице 2 приведены параметры наиболее распространенных ламп накаливания. Как видим, световая эффективность не превышает 15,5 Лм/Вт, в связи с чем, на законодательном уровне в нашей стране ограничено использование ламп накаливания с мощностью более 100 Вт в интересах создания благоприятных условий для перехода на гораздо более эффективные источники света – люминесцентные лампы, а особенно – светодиоды.

Таблица 2. Соотношение электрической мощности, светового потока и световой отдачи для ламп накаливания в виде «груши», популярных в России, цоколь E27

Электрическая мощность, Вт	Световой поток, Лм	Световая отдача, Лм/Вт
15	90	6
25	230	9,2
40	420	10,5
60	720	12
75	940	12,5
100*	1360	13,6
150*	2200	14,6
200*	3100	15,5

^{*-} не допускаются к использованию на территории России согласно Федеральному Закону Российской Федерации № 261-ФЗ от 11.11.2009 года «Об энергосбережении и о повышении энергетической эффективности»

Устройства управления освещением на лампах накаливания представляют симисторные собой. тиристорные или регуляторы напряжения, которые позволяют изменять яркость источников света, меняя напряжение, подаваемое в нагрузку. В таких регуляторах ключ, которым является тиристор или симистор, отпирается один раз за полупериод сетевого напряжения. Путем изменения фазы отпирания достигается возможность плавно и в широком диапазоне изменять напряжение в нагрузке, однако при форма этом существенно искажается напряжения, что приводит к уменьшению коэффициента мощности, росту процентного содержания высших гармоник в сетевом токе и увеличению пульсаций светового потока источника света. Искажение параметров тока промышленной наблюдаемое при этом, может негативно сказаться на работе других

устройств и электрических приборов в птичнике, особенно систем управления ими.

Первоначальное впечатление 0 системах освещения на лампах накаливания складывается на основе беспрецедентно низкой по сравнению с другими источниками света начальной стоимости оборудования, но малая энергоэффективность ламп накаливания приводит к очень большим затратам на электроэнергию для создания нормированной освещенности в птичнике. В конечном итоге в ходе эксплуатации стоимость таких систем освещения существенно превышать осветительное оборудование люминесцентных лампах на светодиодных светильниках. Попытки И улучшить равномерность освещения в птичнике за счет увеличения количества источников света приведет только к несоразмерному возрастанию затрат на электроэнергию. Кроме того, лампы накаливания являются ненаправленными источниками света И излучают световой практически одинаково BO все стороны, ЧТО негативно влияет равномерность освещения при их использовании в случае клеточного содержания птицы и расположении источников света в проходах между батареями. Различие в уровне освещенности на нижних и верхних ярусах клеток, в таких случаях, может доходить до нескольких десятков. Тем не необходимо отметить гораздо лучшую цветопередачу накаливания как источников света, перед люминесцентными лампами и даже Принцип действия ламп накаливания не позволяет перед светодиодами. изменять цветовую температуру или цвет излучения. Как правило, их цветовая температура лежит в диапазоне от 2700 К до 3500 К и зависит в том числе, от изменений напряжения в промышленной сети.

Системы освещения на люминесцентных лампах.

В отличие от ламп накаливания, принцип действия которых основан на излучении нити накаливания при ее нагревании электрическим током, люминесцентные лампы (ЛЛ) представляют собой разрядные источники ультрафиолетовое излучение света, которых ртутного преобразуется люминофором в длинноволновое видимого спектра. Первые образцы отечественных люминесцентных ламп были созданы в 1936-1940 гг. группой московских ученых и инженеров под руководством С.И. Вавилова. Перед разработчиками люминесцентных ламп всегда стояла уменьшения их размеров. Возможность резкого сокращения размеров и создания компактных люминесцентных ламп (КЛЛ) появилась только в начале 90-х годов с появлением технологий производства редкоземельных люминофоров. В настоящее время, несмотря на активное внедрение светодиодных технологий освещения, осветительные установки

люминесцентными лампами составляют в развитых странах более 60 % вырабатываемой световой энергии. В птицеводстве также достаточно широко используются разрядные источники света, но в основном это трубчатые люминесцентные лампы (ТЛЛ), градация мощности которых представлена в таблице 3. В 2000 годах были популярны системы освещения на КЛЛ голландской компании «GASOLEC», которые представляли собой наиболее качественное осветительное оборудование для птицеводства. Использование других компактных люминесцентных ламп, особенно тех, которые предлагаются для широкого потребления с низкой стоимостью, как птицеводства показала практика, ДЛЯ не пригодны ПО причине невозможности управления их световым потоком и крайне низкой надежности. В таблице 4 показана мощность, световой поток и световая отдача наиболее распространенных КЛЛ.

Таблица 3. Стандартные параметры люминесцентных трубчатых ламп белого света с колбой диаметром 26 мм (Т8) и цоколем G13

Электрическая	Световой поток,	Световая отдача,
мощность, Вт	Лм	Лм/Вт
15	720-800	53
18	950-1150	63
30	1800-2250	75
36	1900-2850	80
58	3750-4600	80
70	5450-5550	80

Таблица 4. Параметры некоторых компактных люминесцентных ламп белого света со встроенным электронным пускорегулирующим аппаратом (ЭПРА) и резьбовым цоколем

Электрическая	Световой поток,	Световая отдача,
мощность, Вт	Лм	Лм/Вт
5	200-240	48
7	400	57
11	480	43
15	900	60
20	1200	60
23	1500	65
30	1900	63

Современная система освещения с люминесцентными лампами в птичнике состоит из непосредственно светильников, электронных пускорегулирующих аппаратов (ЭПРА), установленных в корпусах светильников и устройства управления, представляющего собой контроллер или ПЭВМ. В таких системах освещения в отличие от ламп накаливания появляется разделение цепей электропитания и управления для каждого светильника. ЭПРА, способные обеспечить регулировку светового потока люминесцентных ламп, как и сами корпуса светильников и люминесцентные лампы массово выпускаются как в нашей стране, так и за рубежом. Контроллеры управления системой освещения, доступные в массовом производстве, как правило, не приспособлены к эксплуатации в птичниках. Поэтому, специализированные устройства управления системами освещения на трубчатых люминесцентных лампах для птицеводства разрабатываются компаниями, занимающимися выпуском оборудования именно в этой области сельского хозяйства. Как правило, у крупных фирм, функция управления освещением интегрирована в устройство управления общим микроклиматом в птичниках. Управляющий аналоговый сигнал от 0 до 10 В является универсальным для большинства выпускаемых ЭПРА, что позволяет легко конфигурировать освещения в птичнике и снижает стоимость оборудования. Такой ЭПРА устанавливается в корпусе светильника на ТЛЛ. В КЛЛ он находится в самой лампе и для большинства источников света не предназначен для внешней регулировки светового потока, что и приводит при попытках управлять яркостью к выходу ее из строя.

Отечественная компания «РЕЗЕРВ» г. Тула разработала и выпускает устройство управления системами освещения на люминесцентных лампах, используемых в птицеводстве. Регулятор освещения РЛО-02 (фото 4) позволяет управлять до 300 люминесцентных светильников, подключаемых к выходу управляющего аналогового сигнала 0...10 В и обеспечивает изменение освещенности в птичнике согласно заданных режимов прерывистого освещения с реализацией в современном варианте функции «рассвет-закат».

Фото 4. Регулятор освещения РЛО-02 компании «РЕЗЕРВ» г. Тула

Несмотря на преимущества люминесцентных ламп по сравнению с лампами накаливания, которые заключаются в лучшей энергоэффективности (60-90 Лм/Вт у разрядных источников света против 15-20 Лм/Вт у ламп накаливания) и большем сроке службы (до 15 000 часов у люминесцентных ламп и до 3 000 часов у ламп накаливания), системы освещения на люминесцентных лампах обладают существенными недостатками.

Во-первых, как уже отмечалось ранее, сложность реализации управления световым потоком источников света, необходимого для осуществления режимов прерывистого освещения в птичниках. Если для ТЛЛ существуют вполне надежные способы изменения яркости ламп с плавной регулировкой от полного выключения до максимального светового потока, то для КЛЛ в настоящее время надежных систем управления яркостью светильников нет. отечественные компании представляли Некоторые на технические решения в этой области, но на практике в эксплуатации использование таких устройств, как правило, приводило к массовому выходу из строя КЛЛ и не решало поставленной задачи. Необходимо также помнить, что для ТЛЛ использование систем освещения с В полноценной регулировкой освещенности помешении связано увеличением стоимости, В настоящее время такое осветительное оборудование, как правило, стоит дороже светодиодного.

Во-вторых, при использовании ЛЛ может наблюдаться пульсация светового потока, вызванная пульсацией ультрафиолетового излучения столба разряда. Для промышленной сети с частотой 50 Гц частота пульсаций составляет 100 Гц. Коэффициент пульсаций ЛЛ может доходить до 50-60%, при максимально допустимых 5-20% в зависимости от назначения помещения с постоянным присутствием людей (СП 52.13330.2011). Наиболее заметна пульсация яркости свечения концевых участков ЛЛ, так как здесь частота пульсаций в два раза ниже, чем в середине лампы. Такие пульсации могут негативно отражаться на здоровье обслуживающего персонала Снизить воздействие пульсаций позволяет включение электрическую схему нескольких светильников с ЛЛ так, чтобы их токи были сдвинуты по фазе (трехфазное питание). Радикальным средством снижения пульсаций является применение ЭПРА, которые преобразуют частоту тока питания ламп из 50 Гц в более высокую. В некоторых случаях это позволяет достичь величины пульсаций менее 1%.

Во-третьих, люминесцентные лампы в процессе эксплуатации генерируют радиопомехи в диапазоне от 0,15 до 1,5 МГц (длинные и средние волны). В таблице 5 приведены данные о радиопомехах различных по мощности ЛЛ.

Таблица 5. **Уровни радиопомех, создаваемых некоторыми типами** ЛЛ

Мощность	Уровень радиопомех, дБ, при частоте, МГц				
ламп, Вт	0,15	0,25	0,5	1,0	1,5
20	67	67	73	70	65
40	78	76	66	48	40
60	76	80	77	67	59

Снизить уровень радиопомех до безопасного согласно ГОСТ Р 51318.14.1-99, позволяет применение фильтра, являющегося элементом электрической схемы люминесцентного светильника.

Кроме того, как уже отмечалось ранее, использование ЛЛ влечет за собой дополнительные расходы на специальную утилизацию с учетом токсичности ртути, содержащейся в наполнении лампы (до 30 мг).

Люминесцентные лампы, выпускаемые отечественной и зарубежной промышленностью, могут иметь различный цвет свечения, а источники белого света различную цветовую температуру. При этом необходимо помнить, что ЛЛ красного, розового, зеленого или синего цвета имеют спектральный состав излучения, отличающийся от монохромных источников указанных цветов. Получение цветного оттенка излучения таких ламп получается увеличением мощности на тех длинах волн, которые соответствуют необходимым цветам, другие составляющие, характерные для ЛЛ белого света также присутствуют, но имеют меньшую мощность. Поэтому данные некоторых исследований в нашей стране и за рубежом, связанные с выявлением влияния излучения источников света определенных цветов (длин волн) на развитие птицы могут быть некорректны для ЛЛ.

Люминесцентные лампы выпускаются с различной цветовой температурой свечения. Общий диапазон цветовой температуры (цветности) источников белого света делится согласно рекомендациям международной комиссии по освещению (МКО) на 3 группы, как представлено в таблице 6.

Таблица 6. Группы цветности (цветовой температуры) источников белого света, согласно рекомендациям МКО

Цветовая температура, К	Наименование группы
менее или равно 3300	теплый (теплый белый)
3300-5300	средний (нейтральный белый)
более или равно 5300	холодный (холодный белый)

Необходимо помнить, что спектр излучения ЛЛ может содержать в себе ультрафиолетовые составляющие. Это обусловлено излучением в этом диапазоне паров ртути. На долю такого резонансного излучения приходится больше 60% мощности лампы. Фильтром значительно подавляющим ультрафиолетовое излучение ЛЛ является обычное силикатное стекло колбы поэтому ЭТОТ материал является обязательным лампы, элементом конструкции этого источника света. Исключением являются ультрафиолетовые ЛЛ, в которых колба лампы состоит из кварца.

Индекс цветопередачи (ИЦ) люминесцентных ламп, выпускаемых промышленностью, может колебаться от 40 до 95. При этом источником света с максимальным индексом цветопередачи равным 100 считают излучение абсолютно черного тела. ИЦ практически равный 100 имеет излучение Солнца на поверхности Земли, поэтому в естественное большинстве случаев его считают эталонным. Индекс цветопередачи определяет правильность и естественность восприятия цветов окружающих предметов человеком. Безусловно, что и для других живых организмов на Таким образом, чем выше ИЦ источника нашей планете он важен. больше полезной тем информации искусственного освещения, окружающей среде получит живое существо, у которого в процессе эволюции развилась способность различать длины волн (цвет) отраженного от окружающих предметов излучения.

Электропитание люминесцентных ламп осуществляется напряжением промышленной сети 220 В, поэтому по электро- и пожаробезопасности это ставит их в один ряд с лампами накаливания, в отличие от светодиодов.

Светодиодные системы освещения

Использование твердотельных источников света (светодиодов), развитие аппаратных и программных средств управления и низковольтного электропитания позволяют создавать современные системы освещения, в том числе и в птицеводстве. Такие системы освещения представляют сложный комплекс аппаратных устройств, программного обеспечения, элементов управления, средств контроля и защиты не только самой системы, но и

внешней среды. В качестве примера, на рисунке 1, представлена структура системы светодиодного освещения компании «ТЕХНОСВЕТ ГРУПП».

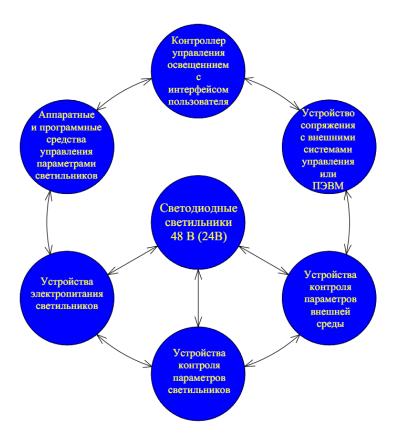


Рис.1 Структура системы светодиодного освещения «ХАМЕЛЕОН» компании «ТЕХНОСВЕТ ГРУПП»

Светодиодные светильники в составе систем освещения могут быть с питанием непосредственно от промышленной сети 220 В или пониженным напряжением. На фотографии 5 изображен уличный светильник компании «ТЕХНОСВЕТ ГРУПП» мощностью 70 Вт и световым потоком 8 000 Лм.

Фото 5. Уличный светильник мощностью 70 Вт и световым потоком 8 000 Лм

Управление световым потоком такого светильника чаше организуется по отдельному от питания каналу управления. В настоящее время появляются технические решения, позволяющие передавать сигналы управления непосредственно по промышленной сети 220 В, но они дороги и не позволяют реализовать преимущество систем светодиодного освещения по сравнению с другими источниками света, а именно возможность повысить электробезопасность в птичниках, пониженное напряжение. Компания «ТЕХНОСВЕТ ГРУПП» в системах светодиодного освещения ДЛЯ птицеводства использует пониженное напряжение питания светодиодных светильников 48 В, кроме того, есть возможность изменения параметров оборудования под использование постоянного напряжения 24 В. Такое напряжение позволяет производить системы освещения, для питания которых используются альтернативные экологически чистые источники энергии, таких как солнечные батареи, ветряные и водяные компактные электростанции, установки, использующие биогаз. В таблице 7 представлены некоторые, наиболее распространенные модели светодиодных светильников компании «ТЕХНОСВЕТ ГРУПП». выпускает более 50 разновидностей компания светодиодных источников света.

Таблица 7. Технические характеристики некоторых светодиодных светильников с пониженным напряжением питания 48 В.

Артикул светильника	Габаритн ые размеры, (длина и диаметр), мм	Кол-во свето- диодов, шт.	Мощность*, Вт	Световой поток, Лм	Свето- вая отдача, Лм/Вт
CK-100T(X)	100X15	6	0,6	60	100
CK-400T(X)	400X15	12	1,5	150	100
CH375-6-12-T(X)	375X15	12	6	600	100
CH375-7-12-T(X)	375X15	12	7	700	100
CH675-12-24-T(X)	675X15	24	12	1200	100
CH675-14-24-T(X)	675X15	24	14	1400	100
CH975-18-36-T(X)	975X15	36	18	1800	100
CH950-21-36-T(X)	750X15	36	21	2100	100

^{* -} указана максимальная мощность.

Основными элементами светодиодного светильника являются твердотельные источники света – светодиоды (фото 6).

Фото 6. Светодиодный светильник на напряжение питания 48 В (24В)

Светодиод состоит из кристалла (кристаллов), корпуса, контактных групп и оптической системы, которая обеспечивает вывод от кристалла и определенную направленность светового потока. В случае светодиодов белого свечения в их состав входит люминофор или краситель, обеспечивающий преобразование части излучения кристаллов в синей области видимого спектра (430-470 нм) в излучение видимого спектра меньшей энергии (500-700 нм), например, желтой и (или) красной области. На рисунке 2 изображен спектр излучения светодиода с цветовой температурой 5000 К. Такой суммарный спектр органы зрения человека будут воспринимать как белый свет.

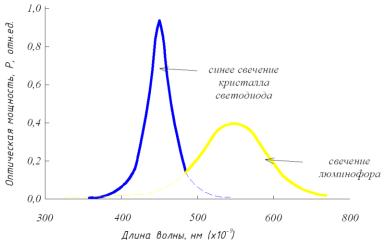


Рис.2 Спектр излучения светодиода белого света на основе люминофора YAG

Кристаллы светодиодов представляют собой твердый раствор химических веществ, произведенных (или, как говорят, выращенных) по определенной технологии. Например, кристаллы светодиодов, излучающих

свет в зеленой и синей части видимого спектра, содержат растворы InGaN/AlGaN/GaN (основные химические элементы — индий, галлий, азот, алюминий), для светодиодов, излучающих свет в красной и желтой части видимого спектра этот состав – AlInGaP/GaP (основные химические элементы кристалла – индий, галлий, алюминий, фосфор). Для светодиодов InGaN, излучающих свет в голубой и синей части (430-470 нм) строение на рисунке 3. Использование светодиодных кристалла представлено светильников пониженного напряжения в птичниках больших размеров определяет необходимость учета потерь в протяженных кабельных линиях электропитания. Нелинейность зависимости светового потока светодиода от рабочего тока и напряжения может приводить К неравномерности освещенности в начале и конце птичника на 20 % и более. Для обеспечения одинаковых параметров питания светодиодов и выравнивания их светового потока на всех светильниках в птичнике в состав электрической схемы источника света ставят стабилизаторы тока. Несмотря на снижение энергоэффективности источника света на 10-15 %, светильники достигают световой отдачи в 100-110 Лм/Вт и позволяют создать одинаковые условия по освещению для всего поголовья птицы при использовании пониженного напряжения.

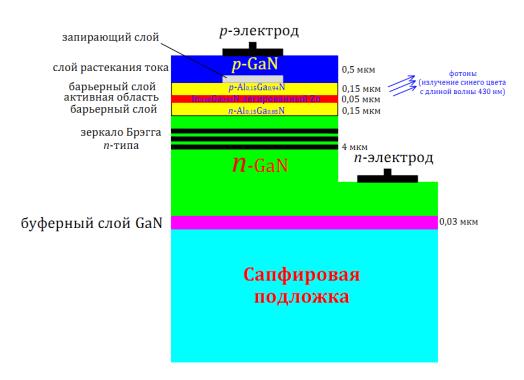


Рис.3 Структура кристалла светодиода, излучающего свет в синей части видимого спектра (длина волны 430 нм)

Пониженное напряжение питания источников света также позволяет использовать компактные герметичные корпуса светодиодных светильников. Размеры такого корпуса определяются габаритами светодиодного модуля и включают в себя конструктивные элементы, выполняющие роль радиатора для отвода тепла от светодиодов. Эти элементы состоят из материалов, обладающих хорошей теплопроводностью. С точки зрения «эффективностьстоимость» в настоящее время наиболее подходит алюминий и его сплавы, теплопроводность у стали, все более активно применяются специальные полимерные материалы с улучшенной теплопроводностью. По сравнению с корпусами светодиодных светильников, состоящих полностью из поликарбоната или обычной пластмассы, использование теплопроводящих конструктивных элементов может продлить срок службы светодиодного источника света на 20-30%. Малые размеры светодиодов позволяют создавать светодиодные светильники различного светового потока диапазоне от 30 до 20 000 и выше Лм в одном корпусе. Лампы накаливания и люминесцентные лампы, которые производятся в настоящее промышленностью, таким диапазоном не обладают, особенно в области малых значений светового потока. Поэтому появление светодиодов, как источников света, позволило решить проблему равномерности освещения при клеточном содержании птицы. При всех достоинствах выращивания и содержания птицы в клетке, одним из недостатков всегда являлось неудовлетворительное освещение в местах нахождения птицы. Современное клеточное оборудование для выращивания цыплят-бройлеров, как правило, предполагает размещение кормушек и поилок внутри, а не по краям клетки. В результате, при установке источников света в проходах между батареями, освещенность на фронте кормления и поения сильно зависит от яруса. Она может различаться на нижнем и верхнем ярусе в несколько десятков раз, от 200 и более Лк на верхнем четвертом или пятом ярусе, и менее 10 Лк на нижнем ярусе. Соответственно, такое различие в условиях содержания птицы негативно сказывается на однородности развития поголовья птицы и ведет к Попытки существенному снижению производственных показателей. установки непосредственно в клетки ламп накаливания или КЛЛ приводили к резкому возрастанию потребления электроэнергии системой освещения и увеличивали вероятность поражения электрическим током обслуживающего персонала и возникновения пожара из-за необходимости монтажа линий электропитания источников света напряжением промышленной сети 220В непосредственно по металлическим конструкциям клетки. В 2009 году компания «ТЕХНОСВЕТ ГРУПП» одной из первых разработала и внедрила систему локального светодиодного освещения для клеточной технологии

производства яйца и мяса птицы. На фотографии 7 в птичнике с клеточным оборудованием откорма цыплят-бройлеров установлена ДЛЯ светодиодного освещения компании «ТЕХНОСВЕТ ГРУПП». Оборудование известной немецкой фирмы «BIG DUTCHMAN» на корпус размерами 18X96 метров включает шесть батарей в четыре яруса. Светодиодные светильники размещаются над каждой кормушкой и развернуты, как видно на фотографии, поперек направления батареи, что позволяет обеспечить необходимую освещенность на кормовом фронте. Кроме ΤΟΓΟ, расположение показывает практика, такое светильников создает нормативный уровень освещения на поилках по обе стороны от линии кормушек, особенно необходимый в начале цикла выращивания, при заселении в клетки цыплят, и позволяет снизить падеж птицы. Мощность каждого светодиодного светильника СК-400 Т(X), используемого в таких системах освещения компанией «ТЕХНОСВЕТ ГРУПП» составляет 1,5 Вт, использовании 1776 источников света, общее максимальное энергопотребление осветительного оборудования не превышает 2,8 кВт/час. По сравнению с подобным локальным освещением на лампах накаливания, разница в энергопотреблении может быть в 36 раз, с люминесцентными источниками света в 10 раз.

Пониженное напряжение питания 48В (24В) позволяет обеспечить безопасность персонала даже при мойке оборудования и включенных светильниках.

Фото 7. Система локального светодиодного освещения в клеточном оборудовании для откорма бройлеров. Максимальный уровень освещенности на кормушках не менее 100 Лк.

Применение светодиодов В качестве источников света позволяет использовать для изменения их яркости современные способы управления световым потоком источников света. Использование ШИМ с частотой от 800 до 1 кГц позволяет эффективно регулировать освещенность с высокой надежностью оборудования и относительно малой стоимостью по сравнению с другими способами регулировки яркости светильников. Кроме того, способы автоматического (согласно жестко заданного алгоритма) автоматизированного (с возможностью вмешательства персонала в заданный алгоритм ДЛЯ локального изменения освещенности) управления освещенностью на весь цикл выращивания и содержания птицы можно реализовать на оборудовании малых габаритных размеров с использованием интуитивно понятного для персонала интерфейса и с небольшой стоимостью. Нельзя забывать, что в этом случае появляется возможность использовать для снижения стресса птицы, включение и выключение освещения с плавным убыванием возрастанием И уровня освещенности заданной продолжительностью (имитация «рассвета» и «заката»). На фотографии 8 представлен блок управления БУ-5АП из состава систем светодиодного **«TEXHOCBET** ГРУПП». Его освещения компании технические характеристики приведены в таблице 8.

Система светодиодного освещения включает в себя элементы внутреннего контроля температуры и рабочего тока светодиодных светильников, параметров промышленной сети 220 В. Предусмотрена возможность подключения внешних датчиков освещенности и вывода рабочих параметров системы освещения на внешние устройства.

В настоящее время специалистами компании «ТЕХНОСВЕТ ГРУПП» активно ведется разработка систем светодиодного освещения, в которых будут использоваться цифровые сигналы управления, что позволит существенно расширить возможности оборудования.

Фото 8. Блок управления светодиодным освещением БУ-5АП

 Таблица 8.

 Технические характеристики блока управления БУ-5АП

Техническая характеристика	Значение
Мощность, Вт	20
Максимальное количество	до 10 000
светодиодных светильников	
регулирования, шт	
Питание, В, Гц	220, 50
Диапазон рабочих температур, °С	от -10 до +40
Срок службы, лет	не менее 10
Выходной сигнал управления, В	ШИМ, 12 В
Внешний управляющий сигнал	аналоговый 0-10 В, 4-20 мА
	или «сухие контакты»
Количество событий (изменений	до 18
яркости) в астрономических сутках	
Количество дней (суток) в каждой	от 1 до 99
группе дней	
Количество групп дней (суток)	от 1 до 47
Точность (шаг) программирования	1
времени переключения, мин	
Время изменения яркости при	0; 30; 60; 90; 120; 180; 300; 600;
включении (выключения)	1200
светильников, сек	с точностью ± 10%
Диапазон установки уровня	от 0 до 99

1
от 1 до ±49
есть
возврат происходит в группу дней
и день расписания, в котором
произошло отключение питания
доступ к изменению настроек
блока и программы по паролю
(пин-коду)

На современном этапе развития производства твердотельных источников света, в системах светодиодного оборудования можно использовать светодиоды практически любой цветовой температуры согласно таблицы 6. Индекс цветопередачи светодиодных светильников может доходить до 95, что ставит их в один ряд по этому параметру с лампами накаливания.

Кроме существенного сокращения затрат на электроэнергию, системы светодиодного освещения позволяют осуществить прорыв и в области обеспечения равномерности освещения в птичнике. Выше было показано использование светодиодных светильников при локальном освещении клеточного оборудования, но и при традиционном размещении светильников в проходах между клеточными батареями, а также и при напольном содержании и выращивании птицы светодиодные источники света могут существенно повысить равномерность освещения. Основным способом здесь является использование большего количества менее мощных светильников. При этом общая стоимость осветительного оборудования увеличивается незначительно при неизменном общем энергопотреблении.

Таким образом, основные преимущества светодиодных систем освещения в птицеводстве перед лампами накаливания и люминесцентными лампами можно свести к следующему:

- гораздо меньшее энергопотребление;

- обеспечение большей безопасности обслуживающего персонала;
- обеспечение более высокой равномерности освещения;
- возможность использования современных режимов прерывистого освещения;
 - отсутствие вредного влияния на окружающую среду;
- сокращение затрат предприятия на обслуживание осветительного оборудования.

Следует отметить, что светодиодные технологии в настоящее время переживают период бурного развития, их стоимость постоянно уменьшается при улучшении технических параметров, что делает их все более привлекательными для применения в том, числе и в птицеводстве.